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Abstract When trying to find approximate solutions for the Traveling Salesman Problem
with heuristic optimization algorithms, small moves called Lin-k-Opts are often used. In our
paper, we provide exact formulas for the numbers of possible tours into which a randomly
chosen tour can be changed with a Lin-k-Opt. Furthermore, we compare the quality of the
results to which the various moves lead.
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1 Introduction: The Traveling Salesman Problem

Due to the simplicity of its formulation and the complexity of its exact solution, the travel-
ing salesman problem (TSP) has been studied for a very long time [1] and has drawn great
attention from various fields, such as applied mathematics, computational physics, and op-
erations research. The traveling salesman faces the problem to find the shortest closed tour
through a given set of nodes, touching each of the N nodes exactly once and returning to the
starting node at the end [1, 2]. Hereby the salesman knows the distances d(i, j) between all
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pairs (i, j) of nodes, which are usually given as some constant non-negative values, either
in units of length or of time. The costs H of a configuration σ are therefore given as the
sum of the distances of the used edges. If denoting a configuration as a permutation σ of the
numbers {1, . . . ,N}, the costs can be written as

H(σ ) = d(σ (N),σ (1)) +
N−1∑

i=1

d(σ (i), σ (i + 1)). (1)

A TSP instance is called symmetric if d(i, j) = d(j, i) for all pairs (i, j) of nodes. For a
symmetric TSP, the costs for going through the tour in a clockwise direction are the same as
going through in an anticlockwise direction. Thus, these two tours are to be considered as
identical.

As the time for determining the optimum solution of a proposed TSP instance grows
exponentially with the system size, the number N of nodes, a large variety of heuristics
has been developed in order to solve this problem approximately. Besides the application of
several different construction heuristics [3], which were either specifically designed for the
TSP or altered in order to enable their application to the TSP, the TSP has been tackled with
various general-purpose improvement heuristics, like Simulated Annealing [4] and related
algorithms such as Threshold Accepting [5, 6], the Great Deluge algorithm [7–9], algorithms
based on the Tsallis statistics [10], Simulated and Parallel Tempering (methods described in
[11–15]), and Search Space Smoothing [16–18]. Furthermore Genetic algorithms [19–21],
Tabu Search [22] and Scatter Search [22, 23], and even Ant Colony Optimization [24],
Particle Swarm Optimization [25–27], and other biologically motivated algorithms [28] have
been applied to the TSP. The quality of these algorithms is compared by creating solutions
for benchmark instances, one of which is shown in Fig. 1.

Fig. 1 The optimum solution of the ATT532 benchmark TSP instance containing the 532 AT&T switch
locations in the United States of America: this benchmark instance is part of Reinelt’s benchmark library
TSPLIB95 [29]. The optimum solution was created with the Searching for Backbones algorithm [30, 31],
making use of the Lin-2-Opt and the Lin-3-Opt, which are shown in Figs. 3 and 4
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Most of these improvement heuristics apply a series of so-called small moves to a current
configuration or a set of configurations. In this context, the move being small means that it
does not change a configuration very much, such that usually the cost of the new tentative
configuration which is to be accepted or rejected according to the acceptance criterion of the
improvement heuristics does not differ very much from the cost of the current configuration.
This method of using only small moves is called the Local Search approach, as the small
moves lead to tentative new configurations, which are close to the previous configuration
according to some metric like the Hamming distance for the TSP: the Hamming distance
between two tours is given by the number of different edges.

These moves create a neighborhood structure between the various configurations. Two
configurations σ and τ are considered to be neighbors of each other if there is a move m

with m(σ) = τ , i.e., if there is a move transferring configuration σ to configuration τ . When
working with small moves, usually the neighborhood structure is symmetric, i.e., if there
is a move m : σ �→ τ , then there is also the inverse move m−1 : τ �→ σ . Commonly, the
description of a small move contains many possibilities for random decisions where and
how to change something. According to which of the many possibilities is chosen the move
applied to configuration σ ends up at one configuration τi or at an other configuration τj .
The set N (σ ) = {τ1, τ2, . . . , τM} is comprised of all these configurations and is called the
neighborhood of configuration σ . The cardinal number M = |N (σ )| is called the neighbor-
hood size of configuration σ . Usually, this neighborhood size of a move is identical for all
configurations. In this paper, we aim at deriving exact values for the neighborhood sizes of
various small moves.

2 The Smallest Moves

2.1 The Exchange

One move which does not change a configuration very much is the Exchange (EXC), which
is sometimes also called Swap and which is shown in Fig. 2. The Exchange exchanges two
randomly selected nodes in the tour. Thus, from a proposed configuration, N × (N − 1)/2
other configurations can be reached, such that the neighborhood of a configuration generated
by this move has a size of order O(N2).

Fig. 2 The Exchange (left) and the Node Insertion Move (right)
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Fig. 3 The Lin-2-Opt

2.2 The Node Insertion Move

Another small move is the Node Insertion Move (NIM), which is also called Jump. It is also
shown in Fig. 2. The Node Insertion Move randomly selects a node and an edge. It removes
the randomly chosen node from its original position and places it between the end points of
the randomly selected edge, which is cut for this purpose. The neighborhood size generated
by this move is N × (N − 2) and thus also of order O(N2).

2.3 The Lin-2-Opt

Lin introduced a further small move, which is called Lin-2-Opt (L2O) [32, 33]: as shown in
Fig. 3, it cuts two edges of the tour, turns the direction of one of the two partial sequences
around, and reconnects these two sequences in a new way. For symmetric TSP instances,
only the two removed edges and the two added edges have to be considered when calculating
the cost difference created by this move. For these symmetric TSPs, it plays no role which of
the two partial sequences is turned around when performing the move, due to the identical
cost function value for moving through clockwisely or anticlockwisely. In the symmetric
case, on which we will concentrate throughout this paper, the move creates a neighborhood
of size N × (N − 3)/2 and thus of order O(N2). Please note that a move cutting two edges
after neighboring nodes does not lead to a new configuration, such that the neighborhood
size is not N × (N − 1)/2, a false value which is sometimes found in the literature.

The Lin-2-Opt turned out to provide better results for the symmetric Traveling Salesman
Problem than the Exchange. The reason for this quality difference was explained analytically
by Stadler and Schnabl. In their paper [34], they basically found out that the results are the
better the less edges are cut: the Lin-2-Opt cuts only two edges whereas the Exchange cuts
four. But they also reported results that the Lin-3-Opt cutting three edges leads to an even
better quality of the solutions than the Lin-2-Opt, what contradicted their results at first
sight, but they explained this finding with the larger neighborhood size of the Lin-3-Opt.

3 The Lin-3-Opt

The next larger move to the Lin-2-Opt is the Lin-3-Opt (L3O): the Lin-3-Opt removes three
edges of the tour and reconnects the three partial sequences to some new closed tour. In con-
trast to the smallest moves for which there is only one possibility to create a new tour, there
are four possibilities in the case of the symmetric TSP how to create a new tour with three
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Fig. 4 The four possibilities how to change a tour with a Lin-3-Opt

new edges with the Lin-3-Opt if each of the partial sequences contains at least two nodes.
These four possibilities are shown in Fig. 4. Please note that we count only the number of
“true” possibilities here, i.e., only those cases in which the tour contains three edges which
were not part formerly in the tour, as otherwise the move would e.g. only be a Lin-2-Opt.
If one of the partial sequences contains only one node and the other two at least two nodes
each, then only one possibility for a “true” Lin-3-Opt remains. If even two of the three par-
tial sequences do only contain one node, then there is no possibility left to reconnect the
three sequences without reusing at least one of the edges which was cut. Analogously, there
is one possibility for the Lin-2-Opt, if both partial sequences contain at least two nodes each,
otherwise there is no possibility.

If looking closely at the four variants of the Lin-3-Opt in Fig. 4, one finds that the result-
ing configurations could also be generated by a sequence of Lin-2-Opts: for the upper left
variant in Fig. 4, three Lin-2-Opts would be needed, whereas only two Lin-2-Opts would
be sufficient for the other three variants. Thus, one might ask whether the Lin-3-Opt is
necessary as a move as a few Lin-2-Opts could do the same job. However, due to the accep-
tance criteria of the improvement heuristics, it might be that at least one of the Lin-2-Opts
would be rejected whereas the combined Lin-3-Opt move could be accepted. Thus, it is of-
ten advantageous also to implement these next-higher-order moves in order to overcome the
barriers in the energy landscape of the small moves.

Now the question arises how large the neighborhood size of a Lin-3-Opt is. Of course,
it has to be of order O(N3), as three edges to be removed are randomly selected out of N

edges. However, for the calculation of the exact number of possibilities one has to distin-
guish between the case in which all partial sequences contain at least two nodes each and
the case in which exactly one partial sequence contains only one node.
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Please note that the Node Insertion Move, which was introduced earlier, is the special
case of the Lin-3-Opt in which one of the partial sequences only contains one node. But
in the special case that one of the two next nearest edges to the randomly chosen node is
selected, the Node Insertion Move corresponds to a Lin-2-Opt. As the number of cut edges
of the Node Insertion Move is 3, such that this move is basically a Lin-3-Opt, but as the
neighborhood size of this move is of order O(N2), this move is also sometimes called Lin-
2.5-Opt.

4 Higher-Order Moves

One can go on to even higher-order Lin-k-Opts: the Lin-4-Opt cuts four edges of the tour
and reconnects the four created partial sequences in a new way. If every partial sequence
contains at least two nodes, there are 25 possibilities for a true Lin-4-Opt to reconnect the
partial sequences to a closed feasible tour. The neighborhood size of this move is of order
O(N4).

The Exchange, which was also introduced earlier, is usually a special case of a Lin-4-
Opt. Only if the two nodes which are to be exchanged are direct neighbors of each other or
if there is exactly one node between them, then the move is equivalent to a Lin-2-Opt.

One can increase the number k of deleted edges further and further. However, by doing
so, one gradually loses the advantage of the Local Search approach, in which, due to the
similarity of the configurations, their cost values do not differ much. In the extreme, the
Lin-N -Opt would lead to a randomly chosen new configuration, the cost value of which
is not related to the cost value of the previous configuration at all. Moving away from the
Local Search approach, the probability for getting an acceptable new configuration among
the many more neighboring configurations with cost values in a much larger interval strongly
decreases due to the finite available computing time. When using the Local Search approach,
it turns out that using the smallest possible move only is only optimal in the case of very
short computing times. With increasing computing time, a well chosen combination of the
smallest moves and their next larger variants becomes optimal. Here the optimization run
has more time to search through a larger neighborhood. The next larger moves enable the
system to overcome barriers in the energy landscape formed by the small moves only. Of
course, one can extend this approach and also include moves with the next larger k and
spend even more computing time.

However, for some difficult optimization problems, an approach based on small moves
and their next larger variants is not sufficient [35]. There indeed large moves have to be used.
A successful approach here are the Ruin & Recreate moves, which destroy a configuration
to some extent and rebuild it according to a given rule set. They work in a different way
than the small moves, which completely randomly select a way to change the configuration.
In contrast, the Ruin & Recreate moves contain constructive elements in order to result in
good configurations. Also for problems like the TSP, for which small moves basically work,
well designed Ruin & Recreate moves are superior to the small moves [35]. However, the
development of excellent Ruin & Recreate moves is rather difficult, it is indeed an optimiza-
tion problem itself, whereas the application of the Local Search approach, which simply
intends to “change the configuration a little bit”, is rather straightforward and also usually
quite successful in producing good solutions, such that it is mostly used.

Sometimes one needs to know the exact size of the neighborhood generated by the im-
plemented moves for relating it to the available computing time or the available amount of
computer memory. This is especially the case for optimization algorithms like Tabu Search,



J Stat Phys (2007) 129: 623–648 629

which e.g. forbid to perform a move which is inverse to moves which were performed only
a short while ago. In this case, such forbidden moves are stored in a tabu list. In the ex-
treme case, the number of entries in this tabu list, the so-called tabu list size, is equal to the
neighborhood size. For cases like these, one needs to know exactly whether the proposed
problem can still be treated with that optimization algorithm on a computer with a rather
limited amount of memory. Furthermore, there are some gradient techniques like Steepest
Descent, which search in the neighborhood of the current configuration for the best neigh-
boring configuration which is then accepted as new configuration. The calculation time of
such algorithms increases linearly with the neighborhood size. Naturally, one is aware of the
neighborhood size of a Lin-k-Opt being of order O(Nk), but as just mentioned, one at least
additionally needs to know the leading prefactor. The aim of this paper is to provide exact
numbers for the neighborhood size. For deriving the neighborhood size of the Lin-3-Opt and
of even larger Lin-k-Opts, we will start with the determination of the number of possibilities
for reconnecting partial sequences to a complete tour with a true Lin-k-Opt in Sect. 5. There
we will find laws how many possibilities exist depending on the number of partial sequences
containing only one node and their spatial neighborhood relation to each other. Having this
distinction at hand, we will calculate the corresponding numbers of possibilities for cutting
the tour in Sect. 6.

5 Number of Possibilities for Reconnecting the Tour with a Lin-k-Opt

5.1 Special Case

5.1.1 Number of Overall Possibilities

For the calculation of the number of possibilities for reconnecting the tour, we want to start
out with the special case that each partial sequence contains at least two nodes. A Lin-k-Opt
cuts the tour into k partial sequences and reconnects them using k new edges which were not
part of the previous configuration. Thus, the neighborhood of an arbitrary configuration σ

contains all configurations which differ in k edges from σ . However, as a first step we con-
sider the overall number of possibilities to reconnect these k partial sequences to a closed
tour containing all nodes, not caring about whether the edges to be inserted were used in
the previous configuration or not. This overall number can be obtained when imagining the
following scenario: one randomly selects one of the partial sequences and fixes its direc-
tion. (This has to be done for the symmetric TSP for which a tour and its mirror tour are
degenerate.) This first partial sequence serves as a starting sequence for the new tour to be
constructed. Then one randomly selects one out of the k−1 remaining partial sequences and
adds it to the already existing partial tour. There are two possible ways of adding it, one for
each direction of the partial sequence. Thus, one gets a new system with only k − 1 partial
sequences. The number of possibilities to construct a new feasible tour is thus given as

P (k) = 2(k − 1)P (k − 1). (2)

This recursive formula can be easily desolved to

P (k) = 2k−1(k − 1)!. (3)
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Table 1 Number of true
Lin-k-Opts if the TSP is
symmetric and if every partial
sequence contains at least 2
nodes

k T (k)

0 1

1 0

2 1

3 4

4 25

5 208

6 2121

5.1.2 Number of True Lin-k-Opts

But this overall set of possibilities contains many variants in which old edges which were
cut are reused in the new configuration, such that the move is not a true Lin-k-Opt. Thus,
in order to get the number of true Lin-k-Opts, those variants have to be subtracted from
the overall number. As there are

(
k

i

)
possibilities to choose i old edges for the new tour if

there were overall k deleted edges, the number of true Lin-k-Opts is given by the recursive
formula

T (k) = 2k−1(k − 1)! −
k−1∑

i=0

(
k

i

)
T (i) with T (0) = 1. (4)

The starting point of this recursion is T (0) = 1, as there is one possibility for the Lin-0-Opt,
the identity move, in which no edge is changed. Table 1 gives an overview of the numbers of
true Lin-k-Opts for small k, in the case that each partial sequence contains at least two nodes
and that the TSP is symmetric. We find that there is one Lin-0-Opt, the identity move, no
Lin-1-Opt, as by cutting only one edge no new tour can be formed, one Lin-2-Opt, four Lin-
3-Opts, and so on. In the case of an asymmetric TSP, each number here has to be multiplied
by a factor of 2.

5.2 General Case

5.2.1 Number of Overall Possibilities

Again we start considering all types of moves which delete k edges, thus cut the tour into k

partial sequences, and then reconnect these sequences to one closed tour by adding k edges,
not caring about whether these edges were part of the previous configuration.

In the general case, not every partial sequence contains at least two nodes. There might
be sequences containing only one node which are surrounded by two sequences containing
more than one node in the old tour. Furthermore, there might be tuples of neighboring se-
quences containing only one node each which are surrounded by two sequences containing
more than one node, and so on.

Let α0 be the number of the partial sequences containing more than one node, α1 be the
number of sequences containing only one node and surrounded by two sequences containing
more than one node in the old tour, α2 be the number of tuples of one-node-sequences
surrounded by two sequences containing more than one node in the old tour, α3 be the
number of triples of one-node-sequences surrounded by two sequences containing more
than one node in the old tour, and so on. We will see that P and T are no longer functions
of k only, but depend on the entries of the vector �α = (α0, α1, . . .).
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In the following, the assumption shall hold that not every edge of the tour is cut, such
that k < N and α0 > 0. Thus, one can always choose a partial sequence consisting of two or
more nodes as a starting point for the creation of a new tour and fix its direction, as we only
consider the symmetric TSP here.

Starting with this fixed partial sequence, a new feasible tour containing all nodes can be
constructed by iteratively selecting an other partial sequence and adding it to the end of the
growing partial tour. For the overall number of possibilities for construcing a new tour, it
plays no role whether one-node-sequences were side by side in the old tour or not. Thus, the
number of possibilities P (�α) is simply given as

P (�α) = P (α0, k − α0,0, . . . ,0). (5)

There are two possible ways for adding a partial sequence containing at least two nodes,
but only one possibility for adding a sequence with only one node. Thus, analogously to the
result above we get the result

P (�α) = 2α0−1(k − 1)!. (6)

For the asymmetric TSP, this number has to be multiplied with 2.

5.2.2 Number of True Lin-k-Opts

When calculating the number of true Lin-k-Opts, i.e., the number of moves which delete
k edges and add k new edges which are not identical with the deleted edges, we need to
consider the spatial arrangement of the one-node-sequences in the old tour. We have to dis-
tinguish between single one-node-sequences, tuples, triples, quadruples, and so on, i.e., we
have to consider the i-tuples for each i separately. Contrarily, we have no problems with the
spatial arrangement of partial sequences with at least two nodes. In order to get the num-
ber of true Lin-k-Opts, we want to use a trick by artificially blowing up partial sequences
with only one node to sequences with two nodes. Let us first consider here that there are
not only partial sequences with at least two nodes but also isolated partial sequences with
only one node. (We thus first leave out the tuples, triples, . . . of single-node-sequences in
our considerations, but it does not matter here whether there are any such structures.) We
extend one one-node sequence to two nodes by doubling the node. Thus, one gets T (α0 + 1,

α1 − 1, . . .) possibilities for performing a true Lin-k-Opt instead of T (α0, α1, . . .) possibil-
ities. By changing the direction of this blown-up sequence, one can connect it—in contrast
to before as it consisted of only one node—to those nodes of the neighboring parts to which
it was connected before. There are two possibilities to connect it this way to one of the two
neighboring partial sequences and one possibility to connect it this way to both of them. But
these cases are forbidden, such that we have to subtract the number of these possibilities in
which they get connected and we achieve the recursive formula

T (�α) = 1

2
(T (α0 + 1, α1 − 1, α2, . . .) − 2T (α0, α1 − 1, α2, . . .)

− T (α0 − 1, α1 − 1, α2, . . .). (7)

Please note that the resulting number has to be divided by 2, as a partial sequence with only
one node cannot be inserted in two different directions.

Analogously, one can derive a formula if there are tuples of neighboring sequences with
only one node each. Here one expands one of the two partial sequences to two nodes, such
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that there is one tuple less, but one isolated one-node-sequence more and one longer se-
quence more. Analogously to above, the false possibilities must be subtracted and the result
divided by 2, such that we get the formula

T (�α) = 1

2
(T (α0 + 1, α1 + 1, α2 − 1, α3, . . .) − T (α0, α1 + 1, α2 − 1, α3, . . .)

− T (α0 + 1, α1, α2 − 1, α3, . . .) − T (α0, α1, α2 − 1, α3, . . .)). (8)

For all longer groups of single-node-sequences, like triples and quadruples, there is one
common approach. Here it is appropriate to blow up a single-node-sequence at the frontier,
such that the following recursive formula is achieved:

T (�α) = 1

2
(T (α0 + 1, α1, . . . , αi−1 + 1, αi − 1, αi+1, . . .)

− T (α0, α1, . . . , αi−1 + 1, αi − 1, αi+1, . . .)

− T (α0 + 1, α1, . . . , αi−2 + 1, αi−1, αi − 1, αi+1, . . .)

− T (α0, α1, . . . , αi−2 + 1, αi−1, αi − 1, αi+1, . . .)). (9)

Generally, one should proceed with the recursion in the following way: first, those non-
zero αi should vanish for which i is maximal. This approach should be iterated with de-
creasing i until one ends up for a formula for tours with partial sequences consisting of at
least two nodes each for which we can use the formula for the special case.

6 Number of Possibilities for Cutting the Tour with a Lin-k-Opt

6.1 Special Case

After having determined the number of possibilities to reconnect partial sequences to a
closed tour with a true Lin-k-Opt, i.e., with a move leading to a configuration with k new
edges, we still have to determine the number of possibilities for cutting the tour in order to
create these partial sequences. We again start out with the special case in which every partial
sequence to be created shall contain at least two nodes. For small values of k, the number of
these possibilities can be found empirically: if considering the Lin-2-Opt, one sees at first
sight that there are N possibilities for performing the first cut. Let us denote the position
of the node after which the tour is cut as i. Then in order to get two partial sequences with
at least two nodes each, the tour must not be cut after one of the tour positions i − 1, i, or
i + 1, such that there are N − 3 possibilities for performing the second cut. As the possibili-
ties for performing the first cut and the possibilities for the second cut have to be multiplied
and as the first and the second cut can be exchanged, one ends up at the overall number
N × (N − 3)/2! of possibilites for cutting the tour with a Lin-2-Opt.

Now let us derive the number of possibilities for the Lin-3-Opt, for which a graphical
illustration like in Fig. 5 is very useful: there are N possibilities for performing the first cut,
let us without restriction assume that this cut is performed after tour position 1, as shown in
the figure. Then there are various possibilities for performing the second cut:

• Cutting the tour after tour position 2 is impossible, as then a partial sequence with only
one node would be created. Thus, the first possibility for performing the second cut is
after tour position 3. Then the question arises how many possibilities for performing the
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Fig. 5 Illustration for the derivation of the number of possibilities for cutting the tour into three partial
sequences containing at least two nodes each: the first cut is fixed here between the tour positions 1 and 2.
For each position of the second cut, which is subsequently shifted through the whole tour, the number of
possibilities for the third cut, which is not shown here, has to be determined. Please note that there is of
course an edge between the first and the last node in the tour and that it is not allowed to perform the second
cut after the tour positions 2 and N as a partial sequence containing only one node would be created in these
two cases

third cut exist for this scenario that the first cut was performed after tour position 1 and
the second after 3. Of course, the tour must not be cut after the tour positions 1 and 3
again, furthermore, the tour must not be cut after the tour positions 2, 4, and N , as then a
partial sequence consisting of only one node would be created. Thus, N − 5 possibilities
for performing the third cut remain.

• The next possibility for performing the second cut is after tour position 4. Again we
have to ask how many possibilities there are for performing the third cut: the tour must
not be cut after the tour positions 1 and 4 again, furthermore, it must not be cut after
the tour positions 2, 3, 5, and N . The third cut is only allowed after the tour positions
6,7,8, . . . ,N − 1, which makes N − 6 possibilities for the third cut.

• Next there is the possibility to perform the second cut after tour position 5. In this scenario,
the third cut is allowed only after the tour positions 7,8,9, . . . ,N − 1 and also after the
tour position 3, such that we again find N − 6 possibilities.

• Shifting the second cut to even larger tour position numbers, the number of possibilities
for performing the third cut between the first and the second cut increases in the same way
as the number of possibilities for performing the third cut after the second cut decreases.
Thus, if the second cut is performed after tour position N − 3, then we have again N − 6
possibilities for performing the third cut as it is only forbidden to perform the third cut
after the tour positions 1,2,N − 4,N − 3,N − 2 and N .

• The case that the second cut is performed after tour position N − 2 is analogous to the
case in which it was performed after tour position 4, such that we have also here N − 6
possibilities for performing the third cut.

• The last possibility for the second cut is to perform it after tour position N − 1. The third
cut cannot be performed after the tour positions 1,2,N − 2,N − 1, and N , such that
N − 5 possibilities remain.

Summarizing, we have N possibilities for performing the first cut and N − 3 possibilities
for performing the second cut. Two of these N − 3 possibilities lead to scenarios in which
we have N − 5 possibilities for performing the third cut, whereas the remaining N − 5
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Table 2 Number of possibilities
for cutting the tour of a traveling
salesman if each partial sequence
shall contain at least two nodes:
k denotes the number of cuts of
the Lin-k-Opt, C(k) the number
of possibilities

k C(k)

2 N × (N − 3)/2

3 N × (N − 4)(N − 5)/3!
4 N × (N − 5)(N − 6)(N − 7)/4!
5 N × (N − 6)(N − 7)(N − 8)(N − 9)/5!

possibilities of the second cut lead to N − 6 possibilities for the third cut. Thus, we have
overall N × (2 × (N − 5) + (N − 5) × (N − 6)) = N × (N − 4) × (N − 5) possibilities
for performing the cuts in this order. As an exchange in the temporal order of the first, the
second, and the third cut leads to the same partial sequences, we have to divide this overall
number by 3!. Therefore, we get N(N − 4)(N − 5)/3! possibilities in the case of a Lin-3-
Opt.

This analysis can be performed in the same way for even larger values of k. Of course,
finding all cases becomes more difficult but the scheme sketched above can be used un-
changed. By empirical going through all possibilities, we found the formulas which are
given in Table 2. From this result, we deduce a general formula for the possibilities C(k) for
the Lin-k-Opt:

C(k) = N ×
k−1∏

i=1

(N − k − i) × 1

k! = N

N − k
×

(
N − k

k

)
. (10)

Thus, we find here that the neighborhood created by a Lin-k-Opt is of order O(Nk).

6.2 General Case

In the general case, an arbitrary Lin-k-Opt can also lead to partial sequences containing only
one node. Here we have to distinguish between various types of cuts: the cuts introduced by
a Lin-k-Opt can be isolated, i.e., they are between two sequences with more than one node
each. Then they can lead to isolated nodes which are between two partial sequences with
more than one node each, and so on. Let us view this from the point of view of the cuts of
the tour. All in all, a Lin-k-Opt generally leads to k cuts in the tour. Let us denote an i-type
multicut (with 1 ≤ i ≤ k) at position j (with 1 ≤ j ≤ N ) as the scenario that the tour is cut
at i successive positions after the node with the tour position number j . Thus, the tour is cut
by an i-type multicut successively between pairs of nodes with the tour position numbers
(j, j + 1), (j + 1, j + 2), . . . , (j + i − 1, j + i).

Furthermore, let βi be the number of i-type multicuts: β1 is the number of isolated cuts.
β2 is the number of 2-type multicuts by which the tour is cut after two successive tour
positions such that a partial sequence containing only one node is created, surrounded by
two sequences containing more than one node. Thus, β2 is also the number of isolated nodes
surrounded by longer sequences and is thus identical with α1. Analogously, 3-type multicuts
lead to tuples of nodes which are surrounded by partial sequences with more than one node,
thus, β3 is the number α2 of these tuples. Analogously, 4-type multicuts lead to triples of
sequences containing only one node each, and so on. Generally, we have for all i ≥ 1 that

αi = βi+1 (11)
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of the last section, but for i = 0 the situation is different: each i-type multicut produces a
further sequence consisting of at least two nodes, such that we have

α0 =
k∑

i=1

βi. (12)

Please note that α0 is both the number of these longer partial sequences and the number of
all i-type multicuts. The overall number k of cuts can be expressed as

k =
k∑

i=1

iβi . (13)

In this general case, the number C of ways of cutting the tour also depends not only
on k, but on the entries of the vector �β = (β1, β2, . . . , βk). As Table 3 shows, the order

Table 3 Number of possibilities for cutting the tour of a traveling salesman: k denotes the overall number
of cuts performed by the Lin-k-Opt, β1, β2, β3, and β4 denote the number of 1-, 2-, 3-, and 4-type multicuts
as defined in the text. Only βi -values for i ≤ 4 are considered here in our examples. For the Lin-6-Opt, only
some special cases are considered. The number C of possibilities depends on all these numbers. All these
formulas for C( �β) were found by hand

k β1 β2 β3 β4 C

2 2 0 0 0 N × (N − 3)/2

0 1 0 0 N

3 3 0 0 0 N × (N − 4)(N − 5)/3!
1 1 0 0 N × (N − 4)

0 0 1 0 N

4 4 0 0 0 N × (N − 5)(N − 6)(N − 7)/4!
2 1 0 0 N × (N − 5)(N − 6)/2

0 2 0 0 N × (N − 5)/2

1 0 1 0 N × (N − 5)

0 0 0 1 N

5 5 0 0 0 N × (N − 6)(N − 7)(N − 8)(N − 9)/5!
3 1 0 0 N × (N − 6)(N − 7)(N − 8)/3!
1 2 0 0 N × (N − 6)(N − 7)/2

2 0 1 0 N × (N − 6)(N − 7)/2

0 1 1 0 N × (N − 6)

1 0 0 1 N × (N − 6)

6 2 2 0 0 N × (N − 7)(N − 8)(N − 9)/2/2

0 3 0 0 N × (N − 7)(N − 8)/3!
3 0 1 0 N × (N − 7)(N − 8)(N − 9)/3!
1 1 1 0 N × (N − 7)(N − 8)

0 0 2 0 N × (N − 7)/2

2 0 0 1 N × (N − 7)(N − 8)/2

0 1 0 1 N × (N − 7)
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of the neighborhood size is now given as O(Nα0). From these examples in the table, we
empirically derive the formula

C( �β) = N ×
∑k

j=1 βj −1∏

i=1

(N − k − i) × 1
∏k

i=1 βi !
(14)

for the number of possibilities for cutting a tour with a Lin-k-Opt, leading to βi many i-type
multicuts. Please note that if the upper index of a product is smaller than the lower index,
then this so-called empty product is 1. This formula can be rewritten to

C( �β) = N

N − k
×

(
N − k

α0

)
× α0!∏k

i=1 βi !
(15)

making use of α0 being the sum of all βi . Please note that (10) for the special case with each
sequence containing at least two nodes is a special case of (15).

The numbers for cutting a tour in partial sequences in this section were first found by
hand for the examples given in Tables 2 and 3, then the general formulas were intuitively
deduced from these. After that the correctness of these formulas was checked by computer
programs up to k = 20 both for the special case and for all variations of the general case.

7 The Neighborhood Size of a Lin-k-Opt

Now let us summarize and combine the results we have achieved so far: first of all, the
multicut structure to which a specific Lin-k-Opt leads has to be examined, as one has to dis-
tinguish between isolated cuts, which divide two partial sequences with at least two nodes,
two cuts just behind each other, such that a partial sequence with only one node is created,
which is in between two partial sequences with more than one node, then three cuts just
behind each other, such that a tuple of partial sequences with only one node each is created,
and so on. The number of possibilities for cutting a tour according to these structures of
multicuts is given in (15). From the numbers of multicut structures, one has then to derive
the numbers of partial sequences, which are given in (11) and (12). Then one has to use the
recursive formulas (7), (8), and (9) in order to simplify the dependency of the number of
reconnections to only one parameter. After that one has to use (4) for getting the number of
reconnections for a true Lin-k-Opt with k new edges. Finally, one has to sum up the products
of the numbers of possible cuttings and of the numbers of possible reconnections in order to
get the overall number of neighboring configurations which can be reached via the move.

8 Quality of the Results Achieved with Various Moves

In the second part of our investigations, we want to ask which quality of solutions can be
achieved with the various moves. Here we concentrate on a comparison of the quality which
can be achieved by the “power” of the moves only, thus, we do not use some elaborate un-
derlying heuristics like those mentioned in the introduction, but use the simplest algorithm,
which is often called Greedy algorithm: starting out from a randomly chosen configuration
σ0, a series of moves is applied to the system. Each move chooses randomly a way how to
change the current configuration σi into a new configuration σi+1. A move is only accepted
by the Greedy algorithm if it does not lead to a deterioration, i.e., if the length H(σi+1) of the
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Table 4 Results for the Greedy algorithm using small moves (Exchange, Node Insertion Move, and Lin-2-
Opt) and the variants of the Lin-3-Opt: for each instance (BEER127, LIN318, and PCB442), 100 optimization
runs were performed, starting with a random configuration and performing a specific number (given in the
text) of the corresponding move

Instance Move Minimum Maximum Mean value ± Error

BEER127 EXC 159705.087 208409.703 182672.403 ± 977.4

NIM 132898.075 161648.200 146418.726 ± 596.4

L2O 121178.315 138126.861 129964.407 ± 325.5

all small 119331.431 134236.701 126605.995 ± 305.2

L3O1 119218.371 131235.436 125118.494 ± 254.3

L3O2 120935.053 133226.981 125888.805 ± 260.4

L3O3 118589.344 127980.167 121981.992 ± 187.4

L3O4 118899.537 127588.470 121928.533 ± 187.4

L3Oall 118629.043 127881.507 121396.175 ± 194.1

LIN318 EXC 90116.6104 127763.120 110660.750 ± 628.5

NIM 59992.7967 78436.1451 68407.9569 ± 376.2

L2O 45115.9243 49971.4471 47276.4710 ± 95.0

all small 43488.2914 47875.0510 45743.4573 ± 78.9

L3O1 43883.1117 46992.0997 45210.0271 ± 63.9

L3O2 44209.8503 47368.0175 45466.4980 ± 66.1

L3O3 42863.7951 44822.3800 43632.8142 ± 39.5

L3O4 42626.6703 45173.6630 43534.8133 ± 44.4

L3Oall 42401.9352 44514.0820 43518.6735 ± 40.7

PCB442 EXC 112322.878 142974.558 129290.471 ± 708.4

NIM 64129.9159 79939.0300 70764.4069 ± 296.7

L2O 54682.4205 59026.1119 56614.6608 ± 82.3

all small 52589.4816 56840.8241 54660.7005 ± 76.3

L3O1 53547.9002 56348.0251 54850.7759 ± 60.7

L3O2 52975.6709 57838.1568 54847.6013 ± 85.7

L3O3 51658.9173 54163.2202 52689.2427 ± 47.9

L3O4 51627.2806 53519.6159 52545.4050 ± 41.0

L3Oall 51480.2480 53892.2666 52493.4278 ± 44.5

tentative new tour is as long as or is shorter than the length H(σi) of the current tour. After
the acceptance of the move σi → σi+1, the system tries to move from the configuration σi+1

to a new configuration. In case of rejection of the move σi → σi+1, one sets σi+1 = σi and
proceeds as above.

Tables 4 and 5 show the minimum, maximum, and average quality of solutions which
can be achieved with the various moves for five different TSP benchmark instances which
were taken from Reinelt’s TSPLIB95 [29] and which vary in size between N = 127 and
N = 1379. In order to be quite sure to end up in a local minimum, we used 50 × N2 move
trials if using either the Exchange or the Node Insertion Move or the Lin-2-Opt. If comparing
the results achieved with these small moves, we find that the Lin-2-Opt leads to the best
results and the Exchange leads to the worst results, a result which is in accordance with
the theoretical derivations in [34]. Now one can also mix these moves in the way that a
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Table 5 Results as in Table 4 for the instances ATT532 and NRW1379

Instance Move Minimum Maximum Mean value ± Error

ATT532 EXC 69294 91946 80037.86 ± 449.7

NIM 37691 47862 42460.43 ± 212.1

L2O 29960 32026 30867.73 ± 42.2

all small 29069 30530 29689.64 ± 31.1

L3O1 28716 30639 29732.22 ± 33.7

L3O2 29229 30817 30031.61 ± 30.7

L3O3 28275 29369 28692.05 ± 22.8

L3O4 28076 29159 28673.47 ± 21.4

L3Oall 28281 29102 28718.27 ± 19.6

NRW1379 EXC 164670.848 196316.798 181017.337 ± 607.0

NIM 89353.7705 105344.742 94486.5234 ± 294.3

L2O 62862.6385 64887.1349 64046.8071 ± 42.9

all small 60334.7758 62208.5391 61154.0388 ± 39.4

L3O1 64624.4812 66712.2867 65611.2830 ± 35.6

L3O2 63267.3838 64788.3074 64008.2578 ± 37.1

L3O3 58730.9852 59768.7048 59199.8516 ± 25.4

L3O4 58727.9973 59656.5893 59173.3947 ± 23.5

L3Oall 58650.2000 60077.9761 59307.8550 ± 26.1

general move routine calls each of these three moves with equal probability. The next lines
in Tables 4 and 5 show that the results, which were taken after 150 × N2 move trials, are
better for this mixture than for any of the three moves alone. This is of course due to the
larger neighborhood size of this mixture.

Then we provide the results for the four variants of the Lin-3-Opt, for which the results
were taken after 10×N3 move trials (a few test runs froze after 1−2×N3 move trials), and
for a mixture (here we call each of the four variants with equal probability), for which the
results were taken after 20 × N3 move trials. If we denote the tour position numbers after
which the tour is cut by the Lin-3-Opt as i, j , and k with i < j < k and their subsequent
tour position numbers as i+, j+, and k+, we can write the cut tour as follows:

. . . σ (i) σ (i+) . . . σ (j) σ (j+) . . . σ (k) σ (k+) . . . .

Please note that the tour is of course closed, such that the partial sequence starting at σ(k+)

ends with σ(i). If j �= i+, k �= j+, and i �= k+, there are four possibilities to reconnect the
three partial sequences with a true Lin-3-Opt:

L3O1: . . . σ (i) σ (j+) . . . σ (k) σ (i+) . . . σ (j) σ (k+) . . . ,

L3O2: . . . σ (i) σ (j) . . . σ (i+) σ (k) . . . σ (j+) σ (k+) . . . ,

L3O3: . . . σ (i) σ (j+) . . . σ (k) σ (j) . . . σ (i+) σ (k+) . . . ,

L3O4: . . . σ (i) σ (k) . . . σ (j+) σ (i+) . . . σ (j) σ (k+) . . . .

Tables 4 and 5 show that there are some differences in the qualities of the results achieved
with the four variants of the Lin-3-Opt and that the mixture provides the best results for
the three smaller instances, whereas two variants are on average better than the mixture for
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Table 6 Results for the Greedy algorithm using two types of Lin-4-Opts: for each instance, 100 optimization
runs were performed, starting with a random configuration and performing N4 times one variant of the Lin-
4-Opt with the Greedy acceptance criterion. As the computing time is rather large, only small instances are
considered

Instance Move Minimum Maximum Mean value ± Error

BEER127 L4O1 123767.073 134986.024 129588.275 ± 244.2

L4O2 121407.255 131300.030 125622.863 ± 214.7

LIN318 L4O1 45184.3246 48569.5839 46740.9896 ± 72.2

L4O2 44539.2015 46932.1063 45451.7793 ± 48.3

PCB442 L4O1 55673.1534 58855.2662 57381.3213 ± 71.3

L4O2 53793.3942 56843.4938 55209.2331 ± 64.0

the instances with N = 532 and N = 1379. Comparing these results with the results for the
small moves, we find that the four variants of the Lin-3-Opt lead to a much better quality of
the results than the small moves, which is in accordance with the results in [36]. As Stadler
and Schnabl already mentioned in [34], this better quality of the results has to be expected
because of the much larger neighborhood size of the Lin-3-Opts.

Now one can ask why not to proceed and to move on to even larger moves. We im-
plemented two of the 25 different variants of the Lin-4-Opt. If denoting the tour position
numbers after which the tour is cut as i, j , k, and l and their subsequent numbers as i+, j+,
k+, and l+, then the cut tour can be written as follows:

. . . σ (i) σ (i+) . . . σ (j) σ (j+) . . . σ (k) σ (k+) . . . σ (l) σ (l+) . . . .

Then the move variants lead to the following new tours:

L4O1: . . . σ (i) σ (k+) . . . σ (l) σ (j+) . . . σ (k) σ (i+) . . . σ (j) σ (l+) . . . ,

L4O2: . . . σ (i) σ (k+) . . . σ (l) σ (k) . . . σ (j+) σ (i+) . . . σ (j) σ (l+) . . . .

The variant L4O1 is sometimes called the two-bridge-move, as the two “bridges”
σ(i+) . . . σ (j) and σ(k+) . . . σ (l) are exchanged. Table 6 shows the quality of the results
achieved with these two variants of the Lin-4-Opt. We find that a further improvement can-
not be found, the results for the better variant of the Lin-4-Opt are roughly of the same
quality as the results for the worse variants of the Lin-3-Opt. Thus, leaving the Local Search
approach even further leads to worse results, especially, if only a small amount of computing
time is available, as the time to find a “good move” increases with increasing neighborhood
size.

Of course, using only the Greedy algorithm, one fails in achieving the global optimum
configurations for the TSP instances, which have a length of 118293.52. . . (BEER127
instance), 42042.535. . . (LIN318 instance), 50783.5475. . . (PCB442 instance), 27686
(ATT532 instance, for which the distances are calculated using the ATT metric accord-
ing to TSPLIB95 [29], which we also use for this instance), and 56638 (NRW1379 instance,
when the distances are rounded to integers), respectively. These optima can be achieved
with the small moves and the variants of the Lin-3-Opt if using a better underlying heuristic
(see e.g. [30, 31, 37]).
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9 Results for Simulated Annealing

One such heuristic which provides much better results than the Greedy algorithm is Sim-
ulated Annealing [4]. In contrast to the Greedy algorithm, which forbids any deterioration
and thus soon gets stuck in a high lying local minimum near the starting point of the op-
timization run, Simulated Annealing additionally accepts deteriorations with probability
exp(−�H/T ), with �H being the energy difference between the current and the tentative
new configuration and T being the temperature. The temperature, which is simply a control
parameter here, governing the acceptance probability of moves leading to worse configura-
tions, is gradually reduced during the optimization run: at high temperatures, most deterio-
rations are allowed. In the T → 0-limit, Simulated Annealing approaches the same scenario
as the Greedy algorithm, by not allowing deteriorations anymore. For the Traveling Sales-
man Problem, a cooling schedule in which the temperature is decreased as Tnew = α × Told

is preferable [38].
The most important question arising now is whether this order of the quality of the var-

ious moves, namely that the Lin-3-Opt is better than the Lin-2-Opt which is in turn better
than the Node Insertion Move which is in turn better than the Exchange, is preserved if using
a better underlying heuristic like Simulated Annealing. Here we present only results for the
PCB442 instance, but the conclusions can be made generally. The optimization runs were
performed in the same way as in [38], i.e., the PCB442 instance was cooled down from the
initial temperature 104 to 0.1 with a cooling factor of 0.99. Finally, one Greedy step was
performed, such that 1147 temperature steps were performed. Thus, the move routine was
called 1147 (the number of temperature steps) times the number of sweeps per temperature
times 442 (the number of TSP nodes). In order to have a good view at the quality differences
between the various moves, here we consider the minimum and mean relative deviation of
the achieved results to the optimum,

δmin = Hmin −Hopt

Hopt
and δmean = 〈H〉 −Hopt

Hopt
(16)

with Hopt = 50783.5475 . . . being the optimum tour length of the PCB442 instance. The
average is taken over 100 optimization runs.

Figure 6 shows the results for various calculation times, depending on the move used.
In the “all”-scenario, every move (Exchange, Node Insertion Move, Lin-2-Opt, and the four
variants of the Lin-3-Opt) was called with equal probability. At first sight, we find that the
results differ strongly for the various moves: the worst results are clearly achieved with the
Exchange for all calculation times. For short calculation times, the Lin-2-Opt leads to the
best results, followed by the “all moves”-scenario, and the Node Insertion Move. Thus, if
having only a rather small amount of calculation time, it is the best to work with a good
small move only and not to use larger moves. However, for some new problem, usually
one does not know in advance which of the small moves lead to good results. Furthermore,
in this time regime, which lasts only between milliseconds and seconds depending on the
system size it is better first to use a construction heuristics and then—if there is still time
available—to proceed with an afterburner in the Greedy mode.

For larger amounts of computing time, the average results for using the Lin-2-Opt only or
working with all moves coincide. Three variants of the Lin-3-Opt provide better results than
the Node Insertion Move. The Exchange still leads to the worst results. Looking at δmin, we
find that the “all moves”-scenario finally finds the optimum (these are the “missing points”
in the curve, as the δmin-axis is drawn in a logarithmic way) if the number of sweeps per
temperature step is at least 104, whereas the Lin-2-Opt alone fails in finding the optimum.
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Fig. 6 Minimum and mean
deviation δ (as defined in formula
(16)) vs. calculation time if
applying Simulated Annealing to
the PCB442 instance

Summarizing, we want to state that when dealing with a new proposed problem it is the
best to implement as many smallest order and next higher order moves as possible. The
often heard sentence “you only need to implement one small move, as the algorithm will do
it all.” Is simply false or at least not generally true. Certainly, one might find a move like
the Lin-2-Opt for a specific problem, which leads to rather the same quality of results as the
ensemble of moves does, but then it has to be the right move and not e.g. the analogon to
the Exchange. This additional implementation work pays off in the quality of the results,
especially if more calculation time is invested.

As the order “Exchange worse than Node Insertion Move worse than Lin-2-Opt” is still
preserved when using a better heuristic like Simulated Annealing, we now want to focus
on these three smallest moves only and continue studying their behaviors in the “greedy”
scenario.

10 Results for Steepest Descent

A variant of the Greedy algorithm is the Steepest Descent method, which is also sometimes
called Greedy algorithm. The Steepest Descent algorithm, which usually also starts at a
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Table 7 Results for the application of the Steepest Descent method to the BEER127, LIN318, PCB442, and
ATT532 TSP instances, using either the Exchange or the Node Insertion Move or the Lin-2-Opt as move:
the results for the number of steps until no further improvement can be found and for the final lengths are
averaged over 100 optimization runs

Instance Move Steps ± Error Final length ± Error

BEER127 EXC 156.01 ± 17.5 188731.586 ± 11677.0

NIM 175.50 ± 13.6 148452.222 ± 6001.2

L2O 129.71 ± 5.2 126245.082 ± 2753.0

LIN318 EXC 522.64 ± 46.8 122639.534 ± 7323.3

NIM 602.39 ± 32.7 71957.503 ± 3674.7

L2O 378.74 ± 8.9 45387.867 ± 696.5

PCB442 EXC 835.69 ± 62.4 145677.130 ± 6900.6

NIM 880.25 ± 42.1 73007.457 ± 3466.2

L2O 504.99 ± 9.7 56168.044 ± 873.8

ATT532 EXC 1108.78 ± 78.0 89917.88 ± 4850.5

NIM 1135.17 ± 49.1 46257.06 ± 3293.4

L2O 643.26 ± 12.5 30186.47 ± 356.1

randomly chosen configuration, performs iteratively a complete search of the whole neigh-
borhood of the current configuration for the largest improvement. Then the best neighboring
configuration is accepted as new solution. This scheme is iterated until no improvement is
found anymore.

Table 7 shows the results for the Steepest Descent method: we find also here that using
the Lin-2-Opt leads to better results than the usage of the Node Insertion Move which is in
turn better than using the Exchange. When comparing the Greedy algorithm with Steepest
Descent, one might think that the gradient technique Steepest Descent has to be superior to
the Greedy algorithm, as Steepest Descent always chooses the largest improvement whereas
the Greedy algorithm randomly selects improving moves. However, when also looking at
Tables 4 and 5, we find that this superiority is only found in the case of using the Lin-2-Opt,
whereas the usage of the Node Insertion Move or of the Exchange leads to worse results for
the Steepest Descent method.

Furthermore, Table 7 shows the number of steps the Steepest Descent method needs until
finding no improvement anymore. This number is equal to the number of accepted moves.
We find that using the Lin-2-Opt is fastest in getting stuck in a local minimum. The number
of steps needed when using the Node Insertion Move is only slightly smaller than the number
of steps needed when using the Exchange which is slowest at finding a local minimum.

As we had to perform a complete search of the neighborhood of each configuration we
visited anyway, when applying the Steepest Descent method, we also counted for each of
these configurations the fraction f of moves which would either lead to an improvement or
at least to a equally good configuration. The results of this counting are shown in a histogram
with a logarithmic energy scale in Fig. 7. We find that the fraction f generally decreases with
decreasing energy, i.e., the better a configuration already is, the less neighbors it has which
are better than it. Furthermore, we generally find that f is largest for the Lin-2-Opt and
smallest for the Exchange.

Please note that the values for this fraction might slightly change if using an other under-
lying heuristic: when using the Steepest Descent technique, the system moves downhill at
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Fig. 7 Fraction f of moves leading to either better or equally good configurations vs. energy H of the cur-
rent configuration, for the moves Exchange, Node Insertion Move, and Lin-2-Opt and for the TSP instances
BEER127, LIN318, PCB442, and ATT532: the results are averaged over 100 optimization runs

the bottom of a sinking channel in the energy landscape. Contrarily, when using Simulated
Annealing, the system is still able to climb over small barriers even at low temperatures.
Therefore, one might get slightly larger values for f when using such a method.

11 Promising Moves

In the first part of this paper, we showed that even small moves like the Lin-2-Opt create
a neighborhood structure containing e.g. N(N − 3)/2 for each configuration. When mov-
ing on to even higher moves or when increasing the number N of nodes, the number of
possibilities for tentative new configurations explodes. On the other hand, we found in the
last section that the neighborhood of a rather good configuration contains only a very small
fraction of configurations which are better. Therefore, the random choice of a neighboring
configuration, which is usually performed when using the Greedy algorithm or more elabo-
rate heuristics like Simulated Annealing seems to be a waste of computing time.

The question arises whether this large size of the neighborhood can be broken down to
the improving moves only. Of course, these improving moves are not known a priori. But
are there some promising candidates within this large set of moves for which one would
expect that they might on average lead to better results than other candidates and that they
lead to these results in a very short calculation time?

An obvious way of choosing such promising candidates would be to use the spatial neigh-
borhood between the various nodes, an approach which was already introduced by Dueck
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and Scheuer for the Lin-2-Opt in [5]: as we aim at finding a roundtrip of minimum length
for the traveling salesman, it would at first sight make sense to connect every node with two
of its nearest neighbors in order to decrease the lengths of the corresponding edges. We have
implemented this new approach for the three small moves as follows:

• “promising” Exchange:
First a node a is randomly selected. Then a node b which is one of the nearest neighbors
of a is randomly selected and which is not the successor of a in the roundtrip. Then the
successor of a and the node b are exchanged.

• “promising” Node Insertion Move:
First a node a is randomly selected after which the tour is to be cut. Then a node b which
is one of the nearest neighbors of a is randomly selected under the condition that b is not
successor of a in the roundtrip. Then the node b is moved between a and the successor
of a.

• “promising” Lin-2-Opt:
First a node a is randomly selected. Then a node b which is one of the nearest neighbors
of a is randomly selected. If b is not the successor of a in the roundtrip, then the tour is
cut after the nodes a and b and a Lin-2-Opt is performed, such that node b becomes the
successor of node a.

Table 8 Results for the approach using promising move candidates (pEXC) with #NN = 5 and #NN = 10
nearest neighbors, respectively, in comparison to the original way of choosing move variants at random
(oEXC), applied for the Exchange: for each instance (BEER127, LIN318, PCB442, ATT532, and NRW1379),
100 optimization runs were performed, starting with a random configuration and performing N ×#NN moves

Instance Move #NN Minimum Maximum Mean value ± Error

BEER127 pEXC 5 186070.070 250479.537 214608.660 ± 1199.5

oEXC 5 214220.253 263034.849 241480.217 ± 1027.7

pEXC 10 169336.900 235755.252 199781.876 ± 1151.1

oEXC 10 194002.966 238887.679 215628.087 ± 969.3

LIN318 pEXC 5 137673.010 186869.924 160594.884 ± 964.1

oEXC 5 159203.446 200404.119 182773.789 ± 657.4

pEXC 10 122251.982 160447.156 138385.482 ± 732.9

oEXC 10 142056.390 173897.354 158801.768 ± 647.1

PCB442 pEXC 5 172120.501 223090.572 196386.635 ± 1006.3

oEXC 5 218330.288 256177.115 240679.810 ± 670.1

pEXC 10 145712.204 190090.969 168055.642 ± 923.3

oEXC 10 188413.932 222203.496 208099.606 ± 724.7

ATT532 pEXC 5 113898 145278 127313.67 ± 608.6

oEXC 5 137502 167169 150940.03 ± 533.6

pEXC 10 91509 122720 106473.59 ± 578.3

oEXC 10 116365 141658 130462.07 ± 489.8

NRW1379 pEXC 5 312918.168 353345.897 333376.791 ± 985.2

oEXC 5 411445.312 456756.333 428841.044 ± 748.4

pEXC 10 251660.750 300854.280 276771.296 ± 1078.9

oEXC 10 349942.916 390667.147 367629.841 ± 750.6



J Stat Phys (2007) 129: 623–648 645

Table 9 Results as in Table 8 but now for the promising (pNIM) and the original (oNIM) variants of the
Node Insertion Move

Instance Move #NN Minimum Maximum Mean value ± Error

BEER127 pNIM 5 156079.584 215166.942 183205.812 ± 1049.8

oNIM 5 194884.573 240826.533 218480.947 ± 841.4

pNIM 10 146375.370 178893.499 162198.791 ± 760.7

oNIM 10 172824.125 212001.153 189321.381 ± 731.8

LIN318 pNIM 5 103943.282 146871.561 125404.861 ± 813.3

oNIM 5 144013.542 169922.712 156346.312 ± 603.8

pNIM 10 81913.999 113822.999 96240.876 ± 653.7

oNIM 10 114789.504 140841.654 128246.464 ± 546.7

PCB442 pNIM 5 100750.549 133770.936 116188.918 ± 767.4

oNIM 5 185965.158 226675.510 204825.220 ± 700.1

pNIM 10 73148.149 103147.869 89593.809 ± 571.3

oNIM 10 150615.509 180378.511 166641.501 ± 554.1

ATT532 pNIM 5 70736 104804 89080.75 ± 660.7

oNIM 5 115655 138473 128274.39 ± 457.5

pNIM 10 52875 72020 62480.95 ± 451.2

oNIM 10 93085 114698 103226.44 ± 394.5

NRW1379 pNIM 5 170492.325 203206.626 189134.147 ± 757.3

oNIM 5 351414.807 383144.570 367676.291 ± 654.9

pNIM 10 122357.469 153649.690 134900.715 ± 709.6

oNIM 10 284494.833 314429.450 298792.043 ± 548.4

Tables 8, 9, and 10 show results for these “promising” variants of the moves in compari-
son to their original counterparts for two different numbers of considered nearest neighbors.
Please note that for the original moves, the variable #NN only governs the amount of cal-
culation time and that here very short computing times were used such that the optimization
runs were hardly able to get into a local minimum. When comparing the results in Tables 8
and 9 with corresponding results in Tables 4 and 5 we find that due to the small amount of
calculation time, neither the original nor the promising approach is able to produce results
getting close to the energy values of the local minima which were achieved after a very
large amount of calculation time, when having a look at the results for the Node Insertion
Move and for the Exchange. However, the promising approach generally produces better
results than the original approach. Doubling both the number of nearest neighbors and the
calculation time for the promising approach leads to an improvement of the results. For the
Exchange, we additionally find that the original approach performing 10 sweeps performs
nearly as well as the promising approach performing only 5 sweeps, such that the promising
approach basically saves 50% of the calculation time. This relation holds also true for small
instances if the Node Insertion Move is used.

When looking at Table 10, we find two main results: first of all, the promising approach
also leads in the case of the Lin-2-Opt to a large improvement of the results when compared
to the original approach with the same amount of calculation time. Moreover, when com-
paring these results to those in Tables 4 and 5, we find that the promising approach leads
to rather the same quality of the results within a small amount of calculation time, although



646 J Stat Phys (2007) 129: 623–648

Table 10 Results as in Tables 8 and 9 but now for the promising (pL2O) and the original (oL2O) variants of
the Lin-2-Opt

Instance Move #NN Minimum Maximum Mean value ± Error

BEER127 pL2O 5 120914.336 147409.536 131137.023 ± 493.5

oL2O 5 158695.131 193975.734 174433.866 ± 744.5

pL2O 10 122993.783 139760.144 130364.863 ± 366.5

oL2O 10 135777.828 161549.605 148319.706 ± 482.1

LIN318 pL2O 5 47800.331 62395.991 55047.699 ± 333.4

oL2O 5 95557.044 111293.035 104063.800 ± 320.3

pL2O 10 45295.842 52366.095 48424.877 ± 170.5

oL2O 10 72462.665 82961.264 77439.372 ± 223.4

PCB442 pL2O 5 54502.263 67853.612 61183.729 ± 253.3

oL2O 5 129591.100 147885.638 137121.227 ± 318.5

pL2O 10 54376.765 59878.951 56724.305 ± 109.0

oL2O 10 98065.559 107799.185 102485.733 ± 218.1

ATT532 pL2O 5 31689 42885 36357.26 ± 207.7

oL2O 5 74412 86027 81582.21 ± 201.6

pL2O 10 30053 34407 31543.01 ± 96.3

oL2O 10 54915 62790 59756.21 ± 139.2

NRW1379 pL2O 5 66347.921 81274.952 71906.597 ± 248.7

oL2O 5 231210.754 250376.658 239907.919 ± 371.3

pL2O 10 61924.761 65395.623 63362.254 ± 65.3

oL2O 10 167950.389 181688.022 174756.115 ± 265.5

we formerly invested a large amount in order to end up in locally minimum configurations.
This result is again in accordance with the prediction in [34] that the Lin-2-Opt is the fastest
move, i.e., that it can transverse the configuration space much faster than the Exchange and
the Node Insertion Move.

Thus, one might want to conclude that one should generally only use this promising
approach as it saves a lot of calculation time. However, when doing so one might fail to reach
the globally optimum configuration as it might be necessary to solve the system locally in a
bad way within an overall optimum configuration and as these promising moves alone might
in such a case not be able to lead to the global optimum.

12 Conclusion

For getting an approximate solution of an instance of the Traveling Salesman Problem,
mostly an improvement heuristic is used, which applies a sequence of move trials which are
either accepted or rejected according to the acceptance criterion of the underlying heuristic.
For the Traveling Salesman Problem, mostly small moves are used which do not change
the configuration very much. Among these moves, the Lin-2-Opt, which cuts two edges of
the tour and turns around a part of the tour, has been proved to provide superior results.
Thus, this Lin-2-Opt and its higher-order variants, the Lin-k-Opts, which cut k edges of the



J Stat Phys (2007) 129: 623–648 647

tour and reconnect the created partial sequences to a new feasible solution by adding k new
edges, and their properties have drawn great attention.

In this paper, we have provided formulas for the exact calculation of the number of con-
figurations which can be reached from an arbitrarily chosen tour via these Lin-k-Opts. A spe-
cific Lin-k-Opt leads to a specific structure of multicuts, i.e., there are isolated cuts, which
divide two partial sequences with at least two nodes, then there are two cuts just behind
each other, such that a partial sequence with only one node is created, which is in between
two partial sequences with more than one node, then there are three cuts just behind each
other, such that a tuple of partial sequences with only one node each is created, and so
on. We have derived both the number of possibilities for cutting a tour according to these
structures of multicuts as well as the number of possibilities for reconnecting the partial
sequences to a closed roundtrip, such that the overall neighborhood size of the move can be
calculated.

In the second part of our investigations, we have compared the results achieved with these
moves using the simple Greedy algorithm which rejects all moves leading to deteriorations.
We have found that the Lin-2-Opt is superior to the other small moves and that the Lin-3-
Opt provides even better results than the Lin-2-Opt whereas two variants of the Lin-4-Opt
are worse than the Lin-3-Opt when using the Greedy algorithm. However, when applying
Simulated Annealing, we find that the Lin-2-Opt produces the best results for short time
scales whereas only a mixture of all small moves and of the Lin-3-Opt was able to find the
global optimum for long time scales.

Then we compared the results for the Greedy algorithm with results achieved for the
Steepest Descent gradient method. We found that accepting a better neighboring configu-
ration which is randomly chosen leads to better results than choosing the best neighboring
configuration if the Exchange or the Node Insertion Move is used, whereas a contrary result
can be found for the Lin-2-Opt. Furthermore, we discovered that the better a configuration
is, the less neighbors it has which are better than it.

Finally, we noticed that a breaking-down of the neighborhood size by only applying
promising candidates of the moves leads to a large speedup and an improvement of the re-
sults for short computing times, compared to the scenario that the moves are chosen entirely
at random. However, it depends on the proposed problem instance whether this “promising
approach” is sufficient to reach the global optimum, even when using a better underlying
heuristic.

When dealing with other optimization problems, one does not know in advance which
small move leads to good results. Thus, we strongly recommend to implement all small
moves and their next higher order counterparts. But moving even further away from the
Local Search approach by adding even higher order moves usually does not lead to fur-
ther improvements, at least as long as the tentative new configuration shall be selected en-
tirely at random. Please note that approaches like Ruin & Recreate [35, 38], which change
the configuration to a large extent, are only enabled to lead to good results, as the ten-
tative new configuration is constructed according to a proposed rule set, ensuring that
the move leads to a good configuration. But for such approaches, it is often rather diffi-
cult to find a good way for changing configurations to a large extent while ensuring that
(nearly) all good configurations, including the global optimum, can be reached, whereas
it is much easier to develop and to implement moves according to the Local Search para-
digm.

Acknowledgements J.J.S. wants to thank Erich P. Stoll (University of Zurich) for the picture of the United
States of America, which serves as a background in Fig. 1.



648 J Stat Phys (2007) 129: 623–648

References

1. Der Handlungsreisende—wie er sein soll und was er zu thun hat, um Aufträge zu erhalten und eines
glücklichen Erfolgs in seinen Geschäften gewiß zu sein—von einem alten Commis-Voyageur (1832)

2. Lawler, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem. Wi-
ley, New York (1985)

3. Reinelt, G.: The Traveling Salesman. Springer, Berlin (1994)
4. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Science 220, 671 (1983)
5. Dueck, G., Scheuer, T.: J. Comput. Phys. 90, 161 (1990)
6. Moscato, P., Fontanari, J.F.: Phys. Lett. A 146, 204 (1990)
7. Dueck, G.: J. Comput. Phys. 104, 86 (1993)
8. Dueck, G., Scheuer, T., Wallmeier, H.-M.: Spektrum der Wissenschaft 1993(3), 42 (1993)
9. Dueck, G.: Das Sintflutprinzip—Ein Mathematik-Roman. Springer, Heidelberg (2004)

10. Penna, T.J.P.: Phys. Rev. E 51, R1–R3 (1995)
11. Marinari, E., Parisi, G.: Europhys. Lett. 19, 451 (1992)
12. Kerler, W., Rehberg, P.: Phys. Rev. E 50, 4220 (1994)
13. Hukushima, K., Nemoto, K.: J. Phys. Soc. Jpn. 65, 1604 (1996)
14. Hukushima, K., Takayama, H., Yoshino, H.: J. Phys. Soc. Jpn. 67, 12 (1998)
15. Coluzzi, B., Parisi, G.: J. Phys. A 31, 4349 (1998)
16. Gu, J., Huang, X.: IEEE Trans. Syst. Man Cybern. 24, 728 (1994)
17. Schneider, J., Dankesreiter, M., Fettes, W., Morgenstern, I., Schmid, M., Singer, J.M.: Physica A 243, 77

(1997)
18. Coy, S.P., Golden, B.L., Wasil, E.A.: Eur. J. Oper. Res. 124, 15 (2000)
19. Schöneburg, E., Heinzmann, F., Feddersen, S.: Genetische Algorithmen und Evolutionsstrategien.

Addison-Wesley, Bonn (1994)
20. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley,

Reading (1989)
21. Holland, J.: SIAM J. Comput. 2, 88 (1973)
22. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Norwell (1998)
23. Rego, C., Alidaee, B.: Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter

Search. Kluwer Academic (2005)
24. Colorni, A., Dorigo, M., Maniezzo, V.: In: Proceedings of ECAL91—European Conference on Artificial

Life, Paris, vol. 134 (1991)
25. Kennedy, J.: In: IEEE International Conference on Evolutionary Computation, Indianapolis, Indiana

(1997)
26. Kennedy, J., Eberhart, R.: In: Proceedings of the 1995 IEEE International Conference on Neural Net-

works, vol. 4, p. 1942 (1995)
27. Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, San Mateo (2001)
28. Stillinger, F.H., Weber, T.A.: J. Stat. Phys. 52, 1429 (1988)
29. http://www.informatik.uni-heidelberg.de/groups/comopt/software/TSPLIB95
30. Schneider, J., Froschhammer, C., Morgenstern, I., Husslein, T., Singer, J.M.: Comput. Phys. Comm. 96,

173 (1996)
31. Schneider, J.: Future Gener. Comput. Syst. 19, 121 (2003)
32. Lin, S.: Bell Syst. Tech. J. 44, 2245 (1965)
33. Lin, S., Kernighan, B.W.: Oper. Res. 21, 498 (1973)
34. Stadler, P.F., Schnabl, W.: Phys. Lett. A 161, 337 (1992)
35. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: J. Comput. Phys. 159, 139 (1999)
36. Kirkpatrick, S., Toulouse, G.: J. Phys. 46, 1277 (1985)
37. Schneider, J., Morgenstern, I., Singer, J.M.: Phys. Rev. E 58, 5085 (1998)
38. Schneider, J.J., Kirkpatrick, S.: Stochastic Optimization. Springer, Berlin (2006)


	On the Neighborhood Structure of the Traveling Salesman Problem Generated by Local Search Moves
	Abstract
	Introduction: The Traveling Salesman Problem
	The Smallest Moves
	The Exchange
	The Node Insertion Move
	The Lin-2-Opt

	The Lin-3-Opt
	Higher-Order Moves
	Number of Possibilities for Reconnecting the Tour with a Lin-k-Opt
	Special Case
	Number of Overall Possibilities
	Number of True Lin-k-Opts

	General Case
	Number of Overall Possibilities
	Number of True Lin-k-Opts


	Number of Possibilities for Cutting the Tour with a Lin-k-Opt
	Special Case
	General Case

	The Neighborhood Size of a Lin-k-Opt
	Quality of the Results Achieved with Various Moves
	Results for Simulated Annealing
	Results for Steepest Descent
	Promising Moves
	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


